Package 'RcppSimdJson'

Title: 'Rcpp' Bindings for the 'simdjson' Header-Only Library for 'JSON' Parsing
Description: The 'JSON' format is ubiquitous for data interchange, and the 'simdjson' library written by Daniel Lemire (and many contributors) provides a high-performance parser for these files which by relying on parallel 'SIMD' instruction manages to parse these files as faster than disk speed. See the <doi:10.48550/arXiv.1902.08318> paper for more details about 'simdjson'. This package parses 'JSON' from string, file, or remote URLs under a variety of settings.
Authors: Dirk Eddelbuettel [aut, cre] , Brendan Knapp [aut] , Daniel Lemire [aut]
Maintainer: Dirk Eddelbuettel <[email protected]>
License: GPL (>= 2)
Version: 0.1.12.1
Built: 2024-11-17 02:53:48 UTC
Source: https://github.com/eddelbuettel/rcppsimdjson

Help Index


'Rcpp' Bindings for the 'simdjson' Header-Only Library for 'JSON' Parsing

Description

The 'JSON' format is ubiquitous for data interchange, and the 'simdjson' library written by Daniel Lemire (and many contributors) provides a high-performance parser for these files which by relying on parallel 'SIMD' instruction manages to parse these files as faster than disk speed. See the <doi:10.48550/arXiv.1902.08318> paper for more details about 'simdjson'. This package parses 'JSON' from string, file, or remote URLs under a variety of settings.

Package Content

Index of help topics:

RcppSimdJson-package    'Rcpp' Bindings for the 'simdjson' Header-Only
                        Library for 'JSON' Parsing
fparse                  Fast, Friendly, and Flexible JSON Parsing
is_valid_json           simdjson Utilities
parseExample            Simple JSON Parsing Example
validateJSON            Validate a JSON file, fast

Maintainer

Dirk Eddelbuettel <[email protected]>

Author(s)

Dirk Eddelbuettel [aut, cre] (<https://orcid.org/0000-0001-6419-907X>), Brendan Knapp [aut] (<https://orcid.org/0000-0003-3284-4972>), Daniel Lemire [aut] (<https://orcid.org/0000-0003-3306-6922>)


Fast, Friendly, and Flexible JSON Parsing

Description

Parse JSON strings and files to R objects.

Usage

fparse(
  json,
  query = NULL,
  empty_array = NULL,
  empty_object = NULL,
  single_null = NULL,
  parse_error_ok = FALSE,
  on_parse_error = NULL,
  query_error_ok = FALSE,
  on_query_error = NULL,
  max_simplify_lvl = c("data_frame", "matrix", "vector", "list"),
  type_policy = c("anything_goes", "numbers", "strict"),
  int64_policy = c("double", "string", "integer64", "always"),
  always_list = FALSE
)

fload(
  json,
  query = NULL,
  empty_array = NULL,
  empty_object = NULL,
  single_null = NULL,
  parse_error_ok = FALSE,
  on_parse_error = NULL,
  query_error_ok = FALSE,
  on_query_error = NULL,
  max_simplify_lvl = c("data_frame", "matrix", "vector", "list"),
  type_policy = c("anything_goes", "numbers", "strict"),
  int64_policy = c("double", "string", "integer64", "always"),
  always_list = FALSE,
  verbose = FALSE,
  temp_dir = tempdir(),
  keep_temp_files = FALSE,
  compressed_download = FALSE,
  ...
)

Arguments

json

JSON strings, file paths, or raw vectors.

  • fparse()

    • character: One or more JSON strings.

    • raw: json is interpreted as the bytes of a single JSON string.

    • list Every element must be of type "raw" and each is individually interpreted as the bytes of a single JSON string.

  • fload()

    • character: One or more paths to files (local or remote) containing JSON.

query

If not NULL, JSON Pointer(s) used to identify and extract specific elements within json. See Details and Examples. NULL, character(), or list() of character(). default: NULL

empty_array

Any R object to return for empty JSON arrays. default: NULL

empty_object

Any R object to return for empty JSON objects. default: NULL.

single_null

Any R object to return for single JSON nulls. default: NULL.

parse_error_ok

Whether to allow parsing errors. default: FALSE.

on_parse_error

If parse_error_ok is TRUE, on_parse_error is any R object to return when query errors occur. default: NULL.

query_error_ok

Whether to allow parsing errors. default: FALSE.

on_query_error

If query_error_ok is TRUE, on_query_error is any R object to return when query errors occur. default: NULL.

max_simplify_lvl

Maximum simplification level. character(1L) or integer(1L), default: "data_frame"

  • "data_frame" or 0L

  • "matrix" or 1L

  • "vector" or 2L

  • "list" or 3L (no simplification)

type_policy

Level of type strictness. character(1L) or integer(1L), default: "anything_goes".

  • "anything_goes" or 0L: non-recursive arrays always become atomic vectors

  • "numbers" or 1L: non-recursive arrays containing only numbers always become atomic vectors

  • "strict" or 2L: non-recursive arrays containing mixed types never become atomic vectors

int64_policy

How to return big integers to R. character(1L) or integer(1L), default: "double".

  • "double" or 0L: big integers become doubles

  • "string" or 1L: big integers become characters

  • "integer64" or 2L: big integers become bit64::integer64s

  • "always" or 3L: all integers become bit64::integer64s

always_list

Whether a list should always be returned, even when length(json) == 1L. default: FALSE.

verbose

Whether to display status messages. TRUE or FALSE, default: FALSE

temp_dir

Directory path to use for any temporary files. character(1L), default: tempdir()

keep_temp_files

Whether to remove any temporary files created by fload() from temp_dir. TRUE or FALSE, default: TRUE

compressed_download

Whether to request server-side compression on the downloaded document, default: FALSE

...

Optional arguments which can be use e.g. to pass additional header settings

Details

  • Instead of using lapply() to parse multiple values, just use fparse() and fload() directly.

    • They are vectorized in order to leverage the underlying simdjson::dom::parser's ability to reuse its internal buffers between parses.

    • Since the overwhelming majority of JSON parsed will not result in scalars, a list() is always returned if json contains more than one value.

    • If json contains multiple values and has names(), the returned object will have the same names.

    • If json contains multiple values and is unnamed, fload() names each returned element using the file's basename().

  • query's goal is to minimize te amount of data that must be materialized as R objects (the main performance bottleneck) as well as facilitate any post-parse processing.

    • To maximize flexibility, there are two approaches to consider when designing query arguments.

      • character vectors are interpreted as containing queries that meant to be applied to all elements of json=.

        • If json= contains 3 strings and query= contains 3 strings, the returned object will be a list of 3 elements (1 for each element of json=), which themselves each contain 3 lists (1 for each element of query=).

      • lists of character vectors are interpreted as containing queries meant to be applied to json in a zip-like fashion.

Author(s)

Brendan Knapp

Examples

# simple parsing ============================================================
json_string <- '{"a":[[1,null,3.0],["a","b",true],[10000000000,2,3]]}'
fparse(json_string)

raw_json <- as.raw(
    c(0x22, 0x72, 0x61, 0x77, 0x20, 0x62, 0x79, 0x74, 0x65, 0x73, 0x20, 0x63,
      0x61, 0x6e, 0x20, 0x62, 0x65, 0x63, 0x6f, 0x6d, 0x65, 0x20, 0x4a, 0x53,
      0x4f, 0x4e, 0x20, 0x74, 0x6f, 0x6f, 0x21, 0x22)
)
fparse(raw_json)

# ensuring a list is always returned ========================================
fparse(json_string, always_list = TRUE)
fparse(c(named_single_element_character = json_string), always_list = TRUE)

# controlling type-strictness ===============================================
fparse(json_string, type_policy = "numbers")
fparse(json_string, type_policy = "strict")
fparse(json_string, type_policy = "numbers", int64_policy = "string")

if (requireNamespace("bit64", quietly = TRUE)) {
    fparse(json_string, type_policy = "numbers", int64_policy = "integer64")
}

# vectorized parsing ========================================================
json_strings <- c(
    json1 = '[{"b":true,
               "c":null},
              {"b":[[1,2,3],
                    [4,5,6]],
               "c":"Q"}]',
    json2 = '[{"b":[[7, 8, 9],
                   [10,11,12]],
              "c":"Q"},
              {"b":[[13,14,15],
                   [16,17,18]],
              "c":null}]'
)
fparse(json_strings)

fparse(
    list(
        raw_json1 = as.raw(c(0x74, 0x72, 0x75, 0x65)),
        raw_json2 = as.raw(c(0x66, 0x61, 0x6c, 0x73, 0x65))
    )
)

# controlling simplification ================================================
fparse(json_strings, max_simplify_lvl = "matrix")
fparse(json_strings, max_simplify_lvl = "vector")
fparse(json_strings, max_simplify_lvl = "list")

# customizing what `[]`, `{}`, and single `null`s return ====================
empties <- "[[],{},null]"
fparse(empties)
fparse(empties,
       empty_array = logical(),
       empty_object = `names<-`(list(), character()),
       single_null = NA_real_)

# handling invalid JSON and parsing errors ==================================
fparse("junk JSON", parse_error_ok = TRUE)
fparse("junk JSON", parse_error_ok = TRUE,
       on_parse_error = "can't parse invalid JSON")
fparse(
    c(junk_JSON_1 = "junk JSON 1",
      valid_JSON_1 = '"this is valid JSON"',
      junk_JSON_2 = "junk JSON 2",
      valid_JSON_2 = '"this is also valid JSON"'),
    parse_error_ok = TRUE,
    on_parse_error = NA
)

# querying JSON w/ a JSON Pointer ===========================================
json_to_query <- c(
    json1 = '[
    "a",
    {
        "b": {
            "c": [[1,2,3],
                  [4,5,6]]
        }
    }
]',
    json2 = '[
    "a",
    {
        "b": {
            "c": [[7,8,9],
                  [10,11,12]],
           "d": [1,2,3,4]
        }
    }
]')
fparse(json_to_query, query = "/1")
fparse(json_to_query, query = "/1/b")
fparse(json_to_query, query = "/1/b/c")
fparse(json_to_query, query = "/1/b/c/1")
fparse(json_to_query, query = "/1/b/c/1/0")

# handling invalid queries ==================================================
fparse(json_to_query, query = "/1/b/d",
       query_error_ok = TRUE,
       on_query_error = "d isn't a key here!")

# multiple queries applied to EVERY element =================================
fparse(json_to_query, query = c(query1 = "/1/b/c/1/0",
                                query2 = "/1/b/c/1/1",
                                query3 = "/1/b/c/1/2"))

# multiple queries applied to EACH element ==================================
fparse(json_to_query,
       query = list(queries_for_json1 = c(c1 = "/1/b/c/1/0",
                                          c2 = "/1/b/c/1/1"),
                    queries_for_json2 = c(d1 = "/1/b/d/1",
                                          d2 = "/1/b/d/2")))

# load JSON files ===========================================================
single_file <- system.file("jsonexamples/small/demo.json", package = "RcppSimdJson")
fload(single_file)

multiple_files <- c(
  single_file,
  system.file("jsonexamples/small/smalldemo.json", package = "RcppSimdJson")
)
fload(multiple_files)


## Not run: 

# load remote JSON ==========================================================
a_url <- "https://api.github.com/users/lemire"
fload(a_url)

multiple_urls <- c(
  a_url,
  "https://api.github.com/users/eddelbuettel",
  "https://api.github.com/users/knapply",
  "https://api.github.com/users/dcooley"
)
fload(multiple_urls, query = "name", verbose = TRUE)

# download compressed (faster) JSON =========================================
fload(multiple_urls, query = "name", verbose = TRUE,
      compressed_download = TRUE)

## End(Not run)

simdjson Utilities

Description

simdjson Utilities

Usage

is_valid_json(json)

is_valid_utf8(x)

fminify(json)

Arguments

json

JSON string(s), or raw vectors representing JSON string(s)

x

String(s), or raw vectors representing string(s).

Examples

prettified_json <-
    '[
    {
        "b": true,
        "c": null
    },
    {
        "b": [
            [
                1,
                2,
                3
            ],
            [
                4,
                5,
                6
            ]
        ],
        "c": "Q"
    }
]'

example_text <- list(
    valid_json = c(json1 = prettified_json,
                   json2 = '{\n\t"good_json":true\n}'),
    invalid_json = c(bad_json1 = "BAD JSON",
                     bad_json2 = `Encoding<-`('"fa\xE7ile"', "latin1")),
    mixed_json = c(na = NA_character_, good_json = '{"good_json":true}',
                   bad_json =  `Encoding<-`('"fa\xE7ile"', "latin1")),
    good_raw_json = charToRaw('{\n\t"good_json":true\n}'),
    bad_raw_json = charToRaw("JUNK"),
    list_of_raw_json = lapply(
        c(na = NA_character_, good_json = '{"good_json":true}',
          bad_json =  `Encoding<-`('"fa\xE7ile"', "latin1")),
        charToRaw
    ),
    not_utf8 = `Encoding<-`('"fa\xE7ile"', "latin1")
)

# UTF-8 validation ==========================================================
example_text$valid_json
is_valid_utf8(example_text$valid_json)

example_text$invalid_json
is_valid_utf8(example_text$invalid_json)

example_text$mixed_json
is_valid_utf8(example_text$mixed_json)

example_text$good_raw_json
is_valid_utf8(example_text$good_raw_json)

example_text$bad_raw_json
is_valid_utf8(example_text$bad_raw_json)

example_text$list_of_raw_json
is_valid_utf8(example_text$list_of_raw_json)

example_text$not_utf8
is_valid_utf8(example_text$not_utf8)
is_valid_utf8(iconv(example_text$not_utf8, from = "latin1", to = "UTF-8"))

# JSON validation ===========================================================
cat(example_text$valid_json[[1L]])
cat(example_text$valid_json[[2L]])
is_valid_json(example_text$valid_json)

example_text$invalid_json
is_valid_json(example_text$invalid_json)

example_text$mixed_json
is_valid_json(example_text$mixed_json)

example_text$good_raw_json
cat(rawToChar(example_text$good_raw_json))
is_valid_json(example_text$good_raw_json)

example_text$bad_raw_json
rawToChar(example_text$bad_raw_json)
is_valid_json(example_text$bad_raw_json)

example_text$list_of_raw_json
lapply(example_text$list_of_raw_json, rawToChar)
is_valid_json(example_text$list_of_raw_json)

example_text$not_utf8
Encoding(example_text$not_utf8)
is_valid_json(example_text$not_utf8)
is_valid_json(iconv(example_text$not_utf8, from = "latin1", to = "UTF-8"))

# JSON minification =========================================================
cat(example_text$valid_json[[1L]])
cat(example_text$valid_json[[2L]])
fminify(example_text$valid_json)

example_text$invalid_json
fminify(example_text$invalid_json)

example_text$mixed_json
fminify(example_text$mixed_json)

example_text$good_raw_json
cat(rawToChar(example_text$good_raw_json))
fminify(example_text$good_raw_json)

example_text$bad_raw_json
rawToChar(example_text$bad_raw_json)
fminify(example_text$bad_raw_json)

example_text$list_of_raw_json
lapply(example_text$list_of_raw_json, rawToChar)
fminify(example_text$list_of_raw_json)

example_text$not_utf8
Encoding(example_text$not_utf8)
fminify(example_text$not_utf8)
fminify(iconv(example_text$not_utf8, from = "latin1", to = "UTF-8"))

Simple JSON Parsing Example

Description

This example is adapted from a blogpost announcing an earlier ‘simdjson’ release. It is of interest mostly for the elegance and conciseness of its C++ code rather than for any functionality exported to R.

Usage

parseExample()

Details

The function takes no argument and returns nothing.

Examples

parseExample()

Validate a JSON file, fast

Description

By relying on simd-parallel 'simdjson' header-only library JSON files can be parsed very quickly.

Usage

validateJSON(jsonfile)

Arguments

jsonfile

A character variable with a path and filename

Value

A boolean value indicating whether the JSON content was parsed successfully

Examples

if (!RcppSimdJson:::.unsupportedArchitecture()) {
    jsonfile <- system.file("jsonexamples", "twitter.json", package="RcppSimdJson")
    validateJSON(jsonfile)
}