Package 'digest'

Title: Create Compact Hash Digests of R Objects
Description: Implementation of a function 'digest()' for the creation of hash digests of arbitrary R objects (using the 'md5', 'sha-1', 'sha-256', 'crc32', 'xxhash', 'murmurhash', 'spookyhash', 'blake3', 'crc32c', 'xxh3_64', and 'xxh3_128' algorithms) permitting easy comparison of R language objects, as well as functions such as'hmac()' to create hash-based message authentication code. Please note that this package is not meant to be deployed for cryptographic purposes for which more comprehensive (and widely tested) libraries such as 'OpenSSL' should be used.
Authors: Dirk Eddelbuettel [aut, cre] , Antoine Lucas [ctb], Jarek Tuszynski [ctb], Henrik Bengtsson [ctb] , Simon Urbanek [ctb] , Mario Frasca [ctb], Bryan Lewis [ctb], Murray Stokely [ctb], Hannes Muehleisen [ctb] , Duncan Murdoch [ctb], Jim Hester [ctb] , Wush Wu [ctb] , Qiang Kou [ctb] , Thierry Onkelinx [ctb] , Michel Lang [ctb] , Viliam Simko [ctb], Kurt Hornik [ctb] , Radford Neal [ctb] , Kendon Bell [ctb] , Matthew de Queljoe [ctb], Dmitry Selivanov [ctb] , Ion Suruceanu [ctb] , Bill Denney [ctb] , Dirk Schumacher [ctb], András Svraka [ctb] , Sergey Fedorov [ctb] , Will Landau [ctb] , Floris Vanderhaeghe [ctb] , Kevin Tappe [ctb], Harris McGehee [ctb], Tim Mastny [ctb], Aaron Peikert [ctb] , Mark van der Loo [ctb] , Chris Muir [ctb] , Moritz Beller [ctb] , Sebastian Campbell [ctb] , Winston Chang [ctb] , Dean Attali [ctb] , Michael Chirico [ctb] , Kevin Ushey [ctb] , Carl Pearson [ctb]
Maintainer: Dirk Eddelbuettel <[email protected]>
License: GPL (>= 2)
Version: 0.6.37.1
Built: 2024-11-27 05:40:28 UTC
Source: https://github.com/eddelbuettel/digest

Help Index


Create AES block cipher object

Description

This creates an object that can perform the Advanced Encryption Standard (AES) block cipher.

Usage

AES(key, mode=c("ECB", "CBC", "CFB", "CTR"), IV=NULL, padding=FALSE)

Arguments

key

The key as a 16, 24 or 32 byte raw vector for AES-128, AES-192 or AES-256 respectively.

mode

The encryption mode to use. Currently only “electronic codebook” (ECB), “cipher-block chaining” (CBC), “cipher feedback” (CFB) and “counter” (CTR) modes are supported.

IV

The initial vector for CBC and CFB mode or initial counter for CTR mode.

padding

Whether or not PKCS#7 padding is used during encryption and decryption in CBC mode.

Details

The standard NIST definition of CTR mode doesn't define how the counter is updated, it just requires that it be updated with each block and not repeat itself for a long time. This implementation treats it as a 128 bit integer and adds 1 with each successive block.

Value

An object of class "AES". This is a list containing the following component functions:

encrypt(text)

A function to encrypt a text vector. The text may be a single element character vector or a raw vector. It returns the ciphertext as a raw vector.

decrypt(ciphertext, raw = FALSE)

A function to decrypt the ciphertext. In ECB mode, the same AES object can be used for both encryption and decryption, but in CBC, CFB and CTR modes a new object needs to be created, using the same initial key and IV values. Returns a single element character vector, or a raw vector if raw = TRUE.

IV()

Report on the current state of the initialization vector. As blocks are encrypted or decrypted in CBC, CFB or CTR mode, the initialization vector is updated, so both operations can be performed sequentially on subsets of the text or ciphertext.

block_size(), key_size(), mode()

Report on these aspects of the AES object.

Author(s)

The R interface was written by Duncan Murdoch. The design is loosely based on the Python Crypto implementation. The underlying AES implementation is by Christophe Devine.

References

United States National Institute of Standards and Technology (2001). "Announcing the ADVANCED ENCRYPTION STANDARD (AES)". Federal Information Processing Standards Publication 197. https://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

Morris Dworkin (2001). "Recommendation for Block Cipher Modes of Operation". NIST Special Publication 800-38A 2001 Edition.

Examples

# First in ECB mode: the repeated block is coded the same way each time
msg <- as.raw(c(1:16, 1:16))
key <- as.raw(1:16)
aes <- AES(key, mode="ECB")
aes$encrypt(msg)
aes$decrypt(aes$encrypt(msg), raw=TRUE)

# Now in CBC mode:  each encoding is different
iv <- sample(0:255, 16, replace=TRUE)
aes <- AES(key, mode="CBC", iv)
code <- aes$encrypt(msg)
code

# Need a new object for decryption in CBC mode
aes <- AES(key, mode="CBC", iv)
aes$decrypt(code, raw=TRUE)

# In CBC mode, the input length must be a multiple of 16 bytes.
# You can use `padding = TRUE` to ensure the input length is always valid.
AES(key, mode="CBC", iv, padding = TRUE)$encrypt(as.raw(1:15))

# CFB mode: IV must be the same length as the Block's block size
# Two different instances of AES are required for encryption and decryption
iv <- sample(0:255, 16, replace=TRUE)
aes <- AES(key, mode="CFB", iv)
code <- aes$encrypt(msg)
code
#decrypt
aes <-  AES(key, mode="CFB", iv)
aes$decrypt(code)


# FIPS-197 examples

hextextToRaw <- function(text) {
  vals <- matrix(as.integer(as.hexmode(strsplit(text, "")[[1]])), ncol=2, byrow=TRUE)
  vals <- vals %*% c(16, 1)
  as.raw(vals)
}

plaintext       <- hextextToRaw("00112233445566778899aabbccddeeff")

aes128key       <- hextextToRaw("000102030405060708090a0b0c0d0e0f")
aes128output    <- hextextToRaw("69c4e0d86a7b0430d8cdb78070b4c55a")
aes <- AES(aes128key)
aes128 <- aes$encrypt(plaintext)
stopifnot(identical(aes128, aes128output))
stopifnot(identical(plaintext, aes$decrypt(aes128, raw=TRUE)))

aes192key       <- hextextToRaw("000102030405060708090a0b0c0d0e0f1011121314151617")
aes192output    <- hextextToRaw("dda97ca4864cdfe06eaf70a0ec0d7191")
aes <- AES(aes192key)
aes192 <- aes$encrypt(plaintext)
stopifnot(identical(aes192, aes192output))
stopifnot(identical(plaintext, aes$decrypt(aes192, raw=TRUE)))

aes256key       <- hextextToRaw("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f")
aes256output     <- hextextToRaw("8ea2b7ca516745bfeafc49904b496089")
aes <- AES(aes256key)
aes256 <- aes$encrypt(plaintext)
stopifnot(identical(aes256, aes256output))
stopifnot(identical(plaintext, aes$decrypt(aes256, raw=TRUE)))

# SP800-38a examples

plaintext <- hextextToRaw(paste("6bc1bee22e409f96e93d7e117393172a",
                                "ae2d8a571e03ac9c9eb76fac45af8e51",
                                "30c81c46a35ce411e5fbc1191a0a52ef",
                                "f69f2445df4f9b17ad2b417be66c3710",sep=""))
key <- hextextToRaw("2b7e151628aed2a6abf7158809cf4f3c")

ecb128output <- hextextToRaw(paste("3ad77bb40d7a3660a89ecaf32466ef97",
                                   "f5d3d58503b9699de785895a96fdbaaf",
                                   "43b1cd7f598ece23881b00e3ed030688",
                                   "7b0c785e27e8ad3f8223207104725dd4",sep=""))
aes <- AES(key)
ecb128 <- aes$encrypt(plaintext)
stopifnot(identical(ecb128, ecb128output))
stopifnot(identical(plaintext, aes$decrypt(ecb128, raw=TRUE)))

cbc128output <- hextextToRaw(paste("7649abac8119b246cee98e9b12e9197d",
                                   "5086cb9b507219ee95db113a917678b2",
                                   "73bed6b8e3c1743b7116e69e22229516",
                                   "3ff1caa1681fac09120eca307586e1a7",sep=""))
iv <- hextextToRaw("000102030405060708090a0b0c0d0e0f")
aes <- AES(key, mode="CBC", IV=iv)
cbc128 <- aes$encrypt(plaintext)
stopifnot(identical(cbc128, cbc128output))
aes <- AES(key, mode="CBC", IV=iv)
stopifnot(identical(plaintext, aes$decrypt(cbc128, raw=TRUE)))


cfb128output <- hextextToRaw(paste("3b3fd92eb72dad20333449f8e83cfb4a",
                                   "c8a64537a0b3a93fcde3cdad9f1ce58b",
                                   "26751f67a3cbb140b1808cf187a4f4df",
                                   "c04b05357c5d1c0eeac4c66f9ff7f2e6",sep=""))
aes <- AES(key, mode="CFB", IV=iv)
cfb128 <- aes$encrypt(plaintext)
stopifnot(identical(cfb128, cfb128output))
aes <- AES(key, mode="CFB", IV=iv)
stopifnot(identical(plaintext, aes$decrypt(cfb128, raw=TRUE)))


ctr128output <- hextextToRaw(paste("874d6191b620e3261bef6864990db6ce",
                                   "9806f66b7970fdff8617187bb9fffdff",
                                   "5ae4df3edbd5d35e5b4f09020db03eab",
                                   "1e031dda2fbe03d1792170a0f3009cee",sep=""))
iv <- hextextToRaw("f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff")
aes <- AES(key, mode="CTR", IV=iv)
ctr128 <- aes$encrypt(plaintext)
stopifnot(identical(ctr128, ctr128output))
aes <- AES(key, mode="CTR", IV=iv)
stopifnot(identical(plaintext, aes$decrypt(ctr128, raw=TRUE)))

Create hash function digests for arbitrary R objects or files

Description

The digest function applies one of several cryptographic or non-cryptographics hash function to arbitrary R objects or files. By default, the objects are internally serialized, and the selected hash functions algorithms can be used to compute a compact digest of the serialized object.

In order to compare this implementation with others, serialization of the input argument can also be turned off in which the input argument must be a character string for which its digest is returned.

Usage

digest(object, algo=c("md5", "sha1", "crc32", "sha256", "sha512",
                      "xxhash32", "xxhash64", "murmur32", "spookyhash",
                      "blake3", "crc32c", "xxh3_64", "xxh3_128"),
       serialize=TRUE, file=FALSE,
       length=Inf, skip="auto", ascii=FALSE, raw=FALSE, seed=0,
       errormode=c("stop","warn","silent"),
       serializeVersion=.getSerializeVersion())

Arguments

object

An arbitrary R object which will then be passed to the serialize function, unless the serialize argument is set to FALSE.

algo

The algorithms to be used; currently available choices are md5, which is also the default, sha1, crc32, sha256, sha512, xxhash32, xxhash64, murmur32, spookyhash, blake3, crc32c, xxh3_64, and xxh3_128.

serialize

A logical variable indicating whether the object should be serialized using serialize (in ASCII form). Setting this to FALSE allows to compare the digest output of given character strings to known control output. It also allows the use of raw vectors such as the output of non-ASCII serialization.

file

A logical variable indicating whether the object is a file name or a file name if object is not specified.

length

Number of characters to process. By default, when length is set to Inf, the whole string or file is processed.

skip

Number of input bytes to skip before calculating the digest. Negative values are invalid and currently treated as zero. Special value "auto" will cause serialization header to be skipped if serialize is set to TRUE (the serialization header contains the R version number thus skipping it allows the comparison of hashes across platforms and some R versions).

ascii

This flag is passed to the serialize function if serialize is set to TRUE, determining whether the hash is computed on the ASCII or binary representation.

raw

A logical variable with a default value of FALSE, implying digest returns digest output as ASCII hex values. Set to TRUE to return digest output in raw (binary) form.

seed

an integer to seed the random number generator. This is only used in the xxhash32, xxhash64 and murmur32 functions and can be used to generate additional hashes for the same input if desired.

errormode

A character value denoting a choice for the behaviour in the case of error: ‘stop’ aborts (and is the default value), ‘warn’ emits a warning and returns NULL and ‘silent’ suppresses the error and returns an empty string.

serializeVersion

An integer value specifying the internal version of the serialization format, with 2 being the default; see serialize for details. The serializeVersion field of option can also be used to set a different value.

Details

Cryptographic hash functions are well researched and documented. The MD5 algorithm by Ron Rivest is specified in RFC 1321. The SHA-1 algorithm is specified in FIPS-180-1, SHA-2 is described in FIPS-180-2.

For md5, sha-1 and sha-256, this R implementation relies on standalone implementations in C by Christophe Devine. For crc32, code from the zlib library by Jean-loup Gailly and Mark Adler is used.

For sha-512, a standalone implementation from Aaron Gifford is used.

For xxhash32, xxhash64, xxh3_64 and xxh3_128 the reference implementation by Yann Collet is used.

For murmur32, the progressive implementation by Shane Day is used.

For spookyhash, the original source code by Bob Jenkins is used. The R implementation that integrates R's serialization directly with the algorithm allowing for memory-efficient incremental calculation of the hash is by Gabe Becker.

For blake3, the C implementation by Samuel Neves and Jack O'Connor is used.

For crc32c, the portable (i.e. non-hardware accelerated) version from Google is used.

Please note that this package is not meant to be used for cryptographic purposes for which more comprehensive (and widely tested) libraries such as OpenSSL should be used. Also, it is known that crc32 is not collision-proof. For sha-1, recent results indicate certain cryptographic weaknesses as well. For more details, see for example https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html.

Value

The digest function returns a character string of a fixed length containing the requested digest of the supplied R object. This string is of length 32 for MD5; of length 40 for SHA-1; of length 8 for CRC32 a string; of length 8 for for xxhash32; of length 16 for xxhash64; and of length 8 for murmur32.

Change Management

Version 0.6.16 of digest corrects an error in which crc32 was not guaranteeing an eight-character return. We now pad with zero to always return eight characters. Should the previous behaviour be required, set option("digestOldCRC32Format"=TRUE) and the output will be consistent with prior version (but not be consistentnly eight characters).

Author(s)

Dirk Eddelbuettel [email protected] for the R interface; Antoine Lucas for the integration of crc32; Jarek Tuszynski for the file-based operations; Henrik Bengtsson and Simon Urbanek for improved serialization patches; Christophe Devine for the hash function implementations for sha-1, sha-256 and md5; Jean-Loup Gailly and Mark Adler for crc32; Hannes Muehleisen for the integration of sha-512; Jim Hester for the integration of xxhash32, xxhash64 and murmur32; Kendon Bell for the integration of spookyhash using Gabe Becker's R package fastdigest.

References

MD5: https://www.ietf.org/rfc/rfc1321.txt.

SHA-1: https://en.wikipedia.org/wiki/SHA-1. SHA-256: https://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf. CRC32: The original reference webpage at rocksoft.com has vanished from the web; see https://en.wikipedia.org/wiki/Cyclic_redundancy_check for general information on CRC algorithms.

https://aarongifford.com/computers/sha.html for the integrated C implementation of sha-512.

The page for the code underlying the C functions used here for sha-1 and md5, and further references, is no longer accessible. Please see https://en.wikipedia.org/wiki/SHA-1 and https://en.wikipedia.org/wiki/MD5.

https://zlib.net for documentation on the zlib library which supplied the code for crc32.

https://en.wikipedia.org/wiki/SHA_hash_functions for documentation on the sha functions.

https://github.com/Cyan4973/xxHash for documentation on the xxHash functions.

https://github.com/aappleby/smhasher for documentation on MurmurHash.

https://burtleburtle.net/bob/hash/spooky.html for the original source code of SpookyHash.

https://github.com/BLAKE3-team/BLAKE3/ for the original source code of blake3.

https://github.com/google/crc32c for the (non-hardware-accelerated) crc32c code.

See Also

serialize, md5sum

Examples

## Standard RFC 1321 test vectors
md5Input <-
  c("",
    "a",
    "abc",
    "message digest",
    "abcdefghijklmnopqrstuvwxyz",
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
    paste("12345678901234567890123456789012345678901234567890123456789012",
          "345678901234567890", sep=""))
md5Output <-
  c("d41d8cd98f00b204e9800998ecf8427e",
    "0cc175b9c0f1b6a831c399e269772661",
    "900150983cd24fb0d6963f7d28e17f72",
    "f96b697d7cb7938d525a2f31aaf161d0",
    "c3fcd3d76192e4007dfb496cca67e13b",
    "d174ab98d277d9f5a5611c2c9f419d9f",
    "57edf4a22be3c955ac49da2e2107b67a")

for (i in seq(along=md5Input)) {
  md5 <- digest(md5Input[i], serialize=FALSE)
  stopifnot(identical(md5, md5Output[i]))
}

sha1Input <-
  c("abc", "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq")
sha1Output <-
  c("a9993e364706816aba3e25717850c26c9cd0d89d",
    "84983e441c3bd26ebaae4aa1f95129e5e54670f1")

for (i in seq(along=sha1Input)) {
  sha1 <- digest(sha1Input[i], algo="sha1", serialize=FALSE)
  stopifnot(identical(sha1, sha1Output[i]))
}

crc32Input <-
  c("abc",
    "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq")
crc32Output <-
  c("352441c2",
    "171a3f5f")

for (i in seq(along=crc32Input)) {
  crc32 <- digest(crc32Input[i], algo="crc32", serialize=FALSE)
  stopifnot(identical(crc32, crc32Output[i]))
}


sha256Input <-
  c("abc",
    "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq")
sha256Output <-
  c("ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad",
    "248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1")

for (i in seq(along=sha256Input)) {
  sha256 <- digest(sha256Input[i], algo="sha256", serialize=FALSE)
  stopifnot(identical(sha256, sha256Output[i]))
}

# SHA 512 example
sha512Input <-
  c("abc",
    "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq")
sha512Output <-
  c(paste("ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a",
          "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f",
          sep=""),
    paste("204a8fc6dda82f0a0ced7beb8e08a41657c16ef468b228a8279be331a703c335",
          "96fd15c13b1b07f9aa1d3bea57789ca031ad85c7a71dd70354ec631238ca3445",
          sep=""))

for (i in seq(along=sha512Input)) {
  sha512 <- digest(sha512Input[i], algo="sha512", serialize=FALSE)
  stopifnot(identical(sha512, sha512Output[i]))
}

## xxhash32 example
xxhash32Input <-
    c("abc",
      "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
      "")
xxhash32Output <-
    c("32d153ff",
      "89ea60c3",
      "02cc5d05")

for (i in seq(along=xxhash32Input)) {
    xxhash32 <- digest(xxhash32Input[i], algo="xxhash32", serialize=FALSE)
    cat(xxhash32, "\n")
    stopifnot(identical(xxhash32, xxhash32Output[i]))
}

## xxhash64 example
xxhash64Input <-
    c("abc",
      "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
      "")
xxhash64Output <-
    c("44bc2cf5ad770999",
      "f06103773e8585df",
      "ef46db3751d8e999")

for (i in seq(along=xxhash64Input)) {
    xxhash64 <- digest(xxhash64Input[i], algo="xxhash64", serialize=FALSE)
    cat(xxhash64, "\n")
    stopifnot(identical(xxhash64, xxhash64Output[i]))
}

## these outputs were calculated using mmh3 python package
murmur32Input <-
    c("abc",
      "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
      "")
murmur32Output <-
    c("b3dd93fa",
      "ee925b90",
      "00000000")

for (i in seq(along=murmur32Input)) {
    murmur32 <- digest(murmur32Input[i], algo="murmur32", serialize=FALSE)
    cat(murmur32, "\n")
    stopifnot(identical(murmur32, murmur32Output[i]))
}

## these outputs were calculated using spooky python package
spookyInput <-
    c("a",
      "abc",
      "message digest")
spookyOutput <-
    c("bdc9bba09181101a922a4161f0584275",
      "67c93775f715ab8ab01178caf86713c6",
      "9630c2a55c0987a0db44434f9d67a192")

for (i in seq(along=spookyInput)) {
    # skip = 30 skips the serialization header and just hashes the strings
    spooky <- digest(spookyInput[i], algo="spookyhash", skip = 30)
    cat(spooky, "\n")
    ## we can only compare to reference output on little-endian systems
    if (isTRUE(.Call(digest:::is_little_endian)))
        stopifnot(identical(spooky, spookyOutput[i]))
}

## blake3 example
blake3Input <-
    c("abc",
      "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
      "")
blake3Output <-
    c("6437b3ac38465133ffb63b75273a8db548c558465d79db03fd359c6cd5bd9d85",
      "c19012cc2aaf0dc3d8e5c45a1b79114d2df42abb2a410bf54be09e891af06ff8",
      "af1349b9f5f9a1a6a0404dea36dcc9499bcb25c9adc112b7cc9a93cae41f3262")

for (i in seq(along=blake3Input)) {
    blake3 <- digest(blake3Input[i], algo="blake3", serialize=FALSE)
    cat(blake3, "\n")
    stopifnot(identical(blake3, blake3Output[i]))
}

## crc32c
crc32cInput <- c("123456789", "The quick brown fox jumps over the lazy dog")
crc32cOutput <- c("e3069283", "22620404")
for (i in seq_along(crc32cInput)) {
    crc32c <- digest(crc32cInput[i], algo="crc32c", serialize=FALSE)
    cat(crc32c, "\n")
    stopifnot(identical(crc32c, crc32cOutput[i]))
}

# example of a digest of a standard R list structure
digest(list(LETTERS, data.frame(a=letters[1:5], b=matrix(1:10,ncol=2))))

# test 'length' parameter and file input
fname <- file.path(R.home(),"COPYING")
x <- readChar(fname, file.info(fname)$size) # read file
for (alg in c("sha1", "md5", "crc32")) {
  # partial file
  h1 <- digest(x    , length=18000, algo=alg, serialize=FALSE)
  h2 <- digest(fname, length=18000, algo=alg, serialize=FALSE, file=TRUE)
  h3 <- digest( substr(x,1,18000) , algo=alg, serialize=FALSE)
  stopifnot( identical(h1,h2), identical(h1,h3) )
  # whole file
  h1 <- digest(x    , algo=alg, serialize=FALSE)
  h2 <- digest(fname, algo=alg, serialize=FALSE, file=TRUE)
  stopifnot( identical(h1,h2) )
}

# compare md5 algorithm to other tools
library(tools)
fname <- file.path(R.home(),"COPYING")
h1 <- as.character(md5sum(fname))
h2 <- digest(fname, algo="md5", file=TRUE)
stopifnot( identical(h1,h2) )

## digest is _designed_ to return one has summary per object to for a desired
## For vectorised output see digest::getVDigest() which provides
## better performance than base::Vectorize()

md5 <- getVDigest()
v <- md5(1:5)     			# digest integers 1 to 5
stopifnot(identical(v[1], digest(1L)),	# check first and third result
          identical(v[3], digest(3L)))

hash arbitrary string to integer

Description

The digest2int function calculates integer hash of an arbitrary string. This is useful for randomized experiments, feature hashing, etc.

Usage

digest2int(x, seed = 0L)

Arguments

x

An arbitrary character vector.

seed

an integer for algorithm initial state. Function will produce different hashes for same input and different seed values.

Value

The digest2int function returns integer vector of the same length as input vector x.

Author(s)

Dmitriy Selivanov [email protected] for the R interface; Bob Jenkins for original implementation http://www.burtleburtle.net/bob/hash/doobs.html

References

Jenkins's one_at_a_time hash: https://en.wikipedia.org/wiki/Jenkins_hash_function#one_at_a_time.

See Also

digest

Examples

current <- digest2int("The quick brown fox jumps over the lazy dog", 0L)
target <- 1369346549L
stopifnot(identical(target, current))

Set a vectorised function for creating hash function digests

Description

The getVDigest function extends digest by allowing one to set a function that returns hash summaries as a character vector of the same length as the input. It also provides a performance advantage when repeated calls are necessary (e.g. applying a hash function repeatedly to an object). The returned function contains the same arguments as digest with the exception of the raw argument (see digest for more details).

Usage

getVDigest(algo=c("md5", "sha1", "crc32", "sha256", "sha512", "xxhash32",
                  "xxhash64", "murmur32", "spookyhash", "blake3", "crc32c",
                  "xxh3_64", "xxh3_128"),
             errormode=c("stop","warn","silent"))

Arguments

algo

The algorithms to be used; currently available choices are md5, which is also the default, sha1, crc32, sha256, sha512, xxhash32, xxhash64, murmur32, spookyhash, blake3, crc32c, xxh3_64, and xxh3_128.

errormode

A character value denoting a choice for the behaviour in the case of error: ‘stop’ aborts (and is the default value), ‘warn’ emits a warning and returns NULL and ‘silent’ suppresses the error and returns an empty string.

Details

Note that since one hash summary will be returned for each element passed as input, care must be taken when determining whether or not to include the data structure as part of the object. For instance, to return the equivalent output of digest(list("a")) it would be necessary to wrap the list object itself getVDigest()(list(list("a")))

Value

The getVDigest function returns a function for a given algorithm and error-mode.

See Also

digest, serialize, md5sum

Examples

stretch_key <- function(d, n) {
    md5 <- getVDigest()
    for (i in seq_len(n))
        d <- md5(d, serialize = FALSE)
    d
}
stretch_key('abc123', 65e3)
sha1 <- getVDigest(algo = 'sha1')
sha1(letters)

md5Input <-
    c("",
      "a",
      "abc",
      "message digest",
      "abcdefghijklmnopqrstuvwxyz",
      "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
      paste("12345678901234567890123456789012345678901234567890123456789012",
            "345678901234567890", sep=""))
md5Output <-
    c("d41d8cd98f00b204e9800998ecf8427e",
      "0cc175b9c0f1b6a831c399e269772661",
      "900150983cd24fb0d6963f7d28e17f72",
      "f96b697d7cb7938d525a2f31aaf161d0",
      "c3fcd3d76192e4007dfb496cca67e13b",
      "d174ab98d277d9f5a5611c2c9f419d9f",
      "57edf4a22be3c955ac49da2e2107b67a")

md5 <- getVDigest()
stopifnot(identical(md5(md5Input, serialize = FALSE), md5Output))
stopifnot(identical(digest(list("abc")),
                 md5(list(list("abc")))))

sha512Input <-c(
    "",
    "The quick brown fox jumps over the lazy dog."
    )
sha512Output <- c(
    paste0("cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce",
           "47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e"),
    paste0("91ea1245f20d46ae9a037a989f54f1f790f0a47607eeb8a14d12890cea77a1bb",
           "c6c7ed9cf205e67b7f2b8fd4c7dfd3a7a8617e45f3c463d481c7e586c39ac1ed")
    )

sha512 <- getVDigest(algo = 'sha512')
stopifnot(identical(sha512(sha512Input, serialize = FALSE), sha512Output))

compute a hash-based message authentication code

Description

The hmac function calculates a message authentication code (MAC) involving the specified cryptographic hash function in combination with a given secret key.

Usage

hmac(key, object,
     algo = c("md5", "sha1", "crc32", "sha256", "sha512"),
     serialize = FALSE, raw = FALSE, ...)

Arguments

key

An arbitrary character or numeric vector, to use as pre-shared secret key.

object

An arbitrary R object which will then be passed to the serialize function, unless the serialize argument is set to FALSE.

algo

The algorithms to be used; currently available choices are md5, which is also the default, sha1, crc32 and sha256.

serialize

default value of serialize is here FALSE, not TRUE as it is in digest.

raw

This flag alters the type of the output. Setting this to TRUE causes the function to return an object of type "raw" instead of "character".

...

All remaining arguments are passed to digest.

Value

The hmac function uses the digest to return a hash digest as specified in the RFC 2104.

Author(s)

Mario Frasca [email protected].

References

MD5: https://www.ietf.org/rfc/rfc1321.txt.

SHA-1: https://en.wikipedia.org/wiki/SHA-1. SHA-256: https://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf. CRC32: The original reference webpage at rocksoft.com has vanished from the web; see https://en.wikipedia.org/wiki/Cyclic_redundancy_check for general information on CRC algorithms.

https://aarongifford.com/computers/sha.html for the integrated C implementation of sha-512.

The page for the code underlying the C functions used here for sha-1 and md5, and further references, is no longer accessible. Please see https://en.wikipedia.org/wiki/SHA-1 and https://en.wikipedia.org/wiki/MD5.

https://zlib.net for documentation on the zlib library which supplied the code for crc32.

https://en.wikipedia.org/wiki/SHA_hash_functions for documentation on the sha functions.

See Also

digest

Examples

## Standard RFC 2104 test vectors
current <- hmac('Jefe', 'what do ya want for nothing?', "md5")
target <- '750c783e6ab0b503eaa86e310a5db738'
stopifnot(identical(target, as.character(current)))

current <- hmac(rep(0x0b, 16), 'Hi There', "md5")
target <- '9294727a3638bb1c13f48ef8158bfc9d'
stopifnot(identical(target, as.character(current)))

current <- hmac(rep(0xaa, 16), rep(0xdd, 50), "md5")
target <- '56be34521d144c88dbb8c733f0e8b3f6'
stopifnot(identical(target, as.character(current)))

## SHA1 tests inspired to the RFC 2104 and checked against the python
## hmac implementation.
current <- hmac('Jefe', 'what do ya want for nothing?', "sha1")
target <- 'effcdf6ae5eb2fa2d27416d5f184df9c259a7c79'
stopifnot(identical(target, as.character(current)))

current <- hmac(rep(0x0b, 16), 'Hi There', "sha1")
target <- '675b0b3a1b4ddf4e124872da6c2f632bfed957e9'
stopifnot(identical(target, as.character(current)))

current <- hmac(rep(0xaa, 16), rep(0xdd, 50), "sha1")
target <- 'd730594d167e35d5956fd8003d0db3d3f46dc7bb'
stopifnot(identical(target, as.character(current)))

Create a raw object

Description

A helper function used to create raw methods.

Usage

makeRaw(object)

## S3 method for class 'raw'
makeRaw(object)

## S3 method for class 'character'
makeRaw(object)

## S3 method for class 'digest'
makeRaw(object)

## S3 method for class 'raw'
makeRaw(object)

Arguments

object

The object to convert into a raw vector

Value

A raw vector is returned.

Author(s)

Dirk Eddelbuettel

Examples

makeRaw("1234567890ABCDE")

Calculate a SHA1 hash of an object

Description

Calculate a SHA1 hash of an object. The main difference with digest(x, algo = "sha1") is that sha1() will give the same hash on 32-bit and 64-bit systems. Note that the results depends on the setting of digits and zapsmall when handling floating point numbers. The current defaults keep digits and zapsmall as large as possible while maintaining the same hash on 32 bit and 64 bit systems.

Usage

sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'numeric'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'complex'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'Date'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'matrix'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'data.frame'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'array'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'list'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'pairlist'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'POSIXlt'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'POSIXct'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'anova'
sha1(x, digits = 4, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'function'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")

## S3 method for class 'formula'
sha1(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class ''(''
sha1(...)

sha1_digest(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'NULL'
sha1(...)
## S3 method for class 'name'
sha1(...)

sha1_attr_digest(x, digits = 14, zapsmall = 7, ..., algo = "sha1")
## S3 method for class 'call'
sha1(...)
## S3 method for class 'character'
sha1(...)
## S3 method for class 'factor'
sha1(...)
## S3 method for class 'integer'
sha1(...)
## S3 method for class 'logical'
sha1(...)
## S3 method for class 'raw'
sha1(...)

Arguments

x

the object to calculate the SHA1

digits

the approximate number of significant digits in base 10. Will be converted to a base 16 equivalent. Defaults to digits = 14, except for sha1.anova where digits = 4

zapsmall

the approximate negative magnitude of the smallest relevant digit. Will be converted to a base 2 equivalent. Values smaller than this number are equivalent to 0. Defaults to zapsmall = 7

...

If it is the only defined argument, passed to another sha1 method. If other arguments exist, see Details for usage.

algo

The hashing algoritm to be used by digest. Defaults to "sha1"

Details

sha1_digest() is a convenience function for objects where attributes cannot be added to apply the digest() function to its arguments. sha1_attr_digest() is a convenience function for objects where objects can be added to generate the hash. If generating hashes for objects in other packages, one of these two functions is recommended for use (typically, sha1_attr_digest()).

Extra arguments:

environment: An optional extra argument for sha1.function and sha1.formula should be TRUE, FALSE or missing. sha1.function and sha1.formula will ignore the enviroment of the function only when environment = FALSE.

Note

sha1 gained an algo argument since version 0.6.15. This allows sha1() to use all hashing algoritms available in digest(). The hashes created with sha1(x) from digest >= 0.6.15 are identical to sha1(x) from digest <= 0.6.14. The only exceptions are hashes created with sha1(x, algo = "sha1"), they will be different starting from digest 0.6.15

Until version 0.6.22, sha1 ignored the attributes of the object for some classes. This was fixed in version 0.6.23. Use options(sha1PackageVersion = "0.6.22") to get the old behaviour.

Version 0.6.24 and later ignore attributes named srcref.

Author(s)

Thierry Onkelinx